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Spectral properties of weakly coupled Landau-Ginzburg stochastic models
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We study the existence of bound states in the generator of the stochastic dynamics associated to weakly
coupled lattice Landau-Ginzburg models. By analyzing the Bethe-Salpeter kernel in the ladder approximation,
these states are shown to exist if the polynomial interaction has a negative quartic term and the lattice
dimension is smaller than 3. Asymptotic values for the masses are also obtained, giving precise relaxation rates
for even correlations.@S1063-651X~99!05203-4#
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I. INTRODUCTION

In this paper, we consider some aspects for the stocha
dynamics of lattice systems described by an action of
form

S~w!5 (
xWPZd

H 1

2 F(
i 51

d

@w~xW1eW i !2w~xW !#21m2w~xW !2G
1lP„w~xW !…J , ~1!

wherew(xW ) is a real continuous spin variable atxWPZd, the
unit d-dimensional lattice,eW i is the unit vector along thei th
coordinate,P is an even polynomial bounded from below
m.0, andl>0.

For tPR denoting the time variable, the dynamics is i
troduced by the Langevin equation

]

]t
w~xW ,t !52

1

2

d

dw~xW ,t !
S1h~xW ,t !, ~2!

where $h(xW ,t)% is a family of Gaussian white nois
processes with the expectationsE„h(xW ,t)…50 and
E„h(xW ,t)h(xW8,t8)…5dxW ,xW8d(t2t8). Such models can be
used to describe the~purely relaxational! evolution of an
order parameter in statistical mechanical systems@1,2#.

The dynamics induced by Eq.~2! is associated with a
Markov semigroup and leaves invariant the Gibbs distri
tion dm5e2S(w)dw/(normalization) defined by action~1!.
More specifically, iff is any function of the spin configura
tion w5$w(xW )%, we define its time evolutionf t by

f t~c!5E~ f „w~ t !…!, ~3!

wherew(0)5c is the initial condition in Eq.~2!. It follows
then that f t is determined by the Markov semigroupe2tH

whose generatorH, given by

H f 52
1

2 (
xWPZd

F ]2

]w~xW !2
f 2

]S

]w~xW !

] f

]w~xW !
G ~4!
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is positive and Hermitian onL2(dm). Clearly, the constan
function f 51 is an eigenfunction ofH with zero eigenvalue.
As m is nonzero, for smalll, there is a gap in the spectrum
of H, implying an exponentially fast approach to equilibriu
in the system.

It is possible and indeed desirable to associate a quas
ticle structure to the operatorH, which can then be viewed a
a Hamiltonian, since this structure provides information
corrections to the exponential law of approach to equil

rium. Momentum operatorsPW are naturally defined by spac
translations and commute withH. From this point of view,
the natural question to ask is about the nature of the spec

of (H,PW ).
This problem has been recently considered by Kondra

and Minlos@3#, in the context of the stochasticXY model at
high temperatures. They constructed one-particle states~for
two different species of quasiparticles! and showed that they
are isolated from the rest of the spectrum.

The existence of isolated one-particle states for the mo
defined by Eqs.~1! and ~2!, which is assumed in this work
follows by adapting standard techniques of constructive fi
theory @4,7#, developed to study analyticity properties
one-particle irreducible Green’s functions, taking as inp
the convergent cluster expansion established by Dimoc
Ref. @5#. This paper intends to further our knowledge abo

the spectrum of (H,PW ). More precisely, we analyze the ex
istence of bound states of two quasiparticles. We remark
the mass of such a bound state shows up directly in
exponential approach to equilibrium for even observab
Hence this question is of direct physical relevance.

To attack this problem, we use a functional integral re
resentation for the associated correlation functions and l
at the dynamical system as a quantum field theory in disc
coordinate space and continuous time. This field theory tu
out to present nonlocal interactions. The part of the spect
above the one-particle states is studied through a Be
Salpeter~BS! equation in a way that is similar to the metho
employed previously in local relativistic field theory. Her
however, the discreteness of space and the nonlocality o
interactions represent additional complications in the ana
sis of the BS kernel. In order to simplify them, we do restr
ourselves to the spectral analysis of translationally invari
2689 ©1999 The American Physical Society
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states. Also, the BS kernel is computed only in the lad
approximation. This procedure has been justified in ca
where a rigorous analysis was possible@6#.

To state our results, we write the polynomial interactionP
in Eq. ~1! as an expansion in a Hermite basis~see Sec. III!,
starting with the fourth power:

P~x!5 (
n52

N
an

~2n!!
:x2n: ~5!

with aN.0. If l is small, we show~in the ladder approxi-
mation! absence of bound states for spatial dimensiond
>3, as well as ford,3 and a2>0. For d,3 and a2,0,
there is a unique bound state. In dimension 1, the mas
this bound state is

M* 52M2
9a2

2l2

4m4
@11O~l!# ~6!

and, ford52,

M* 52M2expF2
4pm2

3ua2ul @11O~l!#G . ~7!

Above,M is the mass of the single quasiparticle.
This paper is organized as follows. In Sec. II, we discu

the functional integration representation and the form of
BS equation that is suitable to handle field theories o
lattice. The computation of the BS kernel and the mass sp
trum above the one-particle state are presented in Sec
Section IV is devoted to conclusions.

II. FEYNMAN-KAC FORMULA

Consider the Hamiltonian~4! on a finite hypercubeL,Zd

with periodic boundary conditions:

HL f 52
1

2 (
xWPL

F ]2

]w~xW !2
f 2

]S

]w~xW !

] f

]w~xW !
G . ~8!

For dwL5PxWPL dw(xW ), let

dmL~w!5
1

ZL
e2SL dwL , ~9!

with SL given by Eq. ~1!, restricted toL with periodic
boundary conditions, and whereZL is a normalization for
dmL so that*dmL51. With this, the operatorHL is Hermit-
ian on the spaceL2(dmL). Next, letUL be the unitary op-
erator fromL2(dmL) to L2(dwL) given by

~UL f !~w!5ZL
21/2e2~1/2!SL f ~w!. ~10!

A straightforward calculation shows that

LL5ULHLUL
2152

1

2 (
xWPL

]2

]w~xW !2

1
1

4 (
xWPL

F1

2 S ]SL

]w~xW !
D 2

2
]2SL

]w~xW !2G ,

~11!
r
es

of

s
e
a
c-
II.

so thatLL is a Schro¨dinger-type operator. Performing th
derivatives, we get

LL52
1

2 (
xWPL

]2

]w~xW !2
1

1

8 (
xWPL

w~xW !@~2D1m2!2w#~xW !

1
l

4 (
xWPL

@~2D1m2!w#~xW !P8„w~xW !…

1 (
xWPL

Fl2

8
P8„w~xW !…22

l

4
P 9„w~xW !…2

~2d1m2!

4 G .
~12!

In the above formula,2D is the lattice Laplacian with peri-
odic boundary conditions onL given by

~2Dw!~xW !52dw~xW !2 (
uxW2yW u51

w~yW !. ~13!

The functional integral associated with Eq.~12! can be
obtained by standard methods@4#. If f 1 ,...,f n are functions
of the spin configuration inL, if V(w)51 is the ground state
of HL and for t1<t2<¯<tnPR, then we have the
Feynman-Kac formula

~V, f 1e2~ t22t1!HL f 2¯e2~ tn2tn21!HL f nV!L2~dmL!

5~ULV, f 1e2~ t22t1!LL f 2¯e2~ tn2tn21!LL f nULV!L2~dwL!

5E f 1„w~ t1!…¯ f n„w~ tn!…drL , ~14!

where the path space measuredrL is given by

drL5
e2WL dnL

*e2WL dnL
~15!

with

WL5E
2`

`

dt (
xWPL

Fl4 P8„w~xW ,t !…~2D1m2!w~xW ,t !

1
l2

8
P8„w~xW ,t !…22

l

4
P 9„w~xW ,t !…G , ~16!

anddnL is a Gaussian measure with mean zero and varia
given by

E w~xW ,t !w~yW ,t8!dnL

5
1

2puLu E2`

`

dp0 (
pW PLW

eip0~ t2t8!eipW •~xW2yW !

p0
21F( i 51

d ~12cospi !1
m2

2
G 2 .

~17!
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In Eq. ~17!, uLu is the number of points inL, L̃ is the

Fourier dual lattice, pW 5(p1 ,...,pd)PL̃, and pW •(xW2yW )
5( i 51

d pi(xi2yi).
The thermodynamic limitL→Zd can now be taken in Eq

~14!. The corresponding limiting expressions for Eqs.~12!–
~16! are easily obtained. The normalized sum (1/uLu)(pW PL̃

in the propagator~17! is replaced in the limit by an integra
@1/(2p)d#*Td

ddp over the d-dimensional torus Td

5@2p,p#d. That the limitL→Zd exists, at least for smal
l, follows from a cluster expansion argument~see Ref.@5#!.
Dropping hereafter the subscriptL for the infinite-volume
quantities, we have the representation
he

ta
„V,ŵ~xW1!e2~ t22t1!Hŵ~xW2!¯e2~ tn2tn21!Hŵ~xWn!V…

5E w~xW1 ,t1!¯w~xWn ,tn!dr[Sl
~n!~xW1 ,t1 ;...;xWn ,tn!,

~18!

where the inner product~•,•! on the left-hand side~lhs! is
taken on the physical Hilbert spaceL2(dm), ŵ(x) is the zero
time field atxWPZd, and t1<t2<¯<tnPR. Since the infi-
nite volume theory is translational invariant, we can intr

duce momentum operatorsPW , commuting withH, such that
@writing ŵ(0)5ŵ#
„V,ŵ~xW1!e2~ t22t1!Hŵ~xW2!¯e2~ tn2tn21!Hŵ~xWn!V…

5~V,ŵe2~ t22t1!H1 iPW •~xW22xW1!ŵ¯e2~ tn2tn21!H1 iPW •~xWn2xWn21!ŵV!. ~19!
ry
m

asi-

e

a

For p5(p0 ,pW ), p0PR andpW PTd , let

S̃l
~2!~p!5E

2`

`

dt (
xWPZd

Sl
~2!~0W ,0;xW ,t !e2 i ~p0t1pW •xW !. ~20!

It follows from Eqs.~18! and~19!, and the spectral theorem
that

S̃l
~2!~p!5E

0

`E
Td

2E

E21p0
2 ~2p!dd~qW 2pW !d„V,ŵE~E,qW !ŵV…,

~21!

whereE(E,pW ) is the spectral projection associated with t
operators (H,PW ). The integral overE runs from 0 to` and
that overqW is on Td . We can write Eq.~21! in the form

S̃l
~2!~p!5E

0

` 2E

E21p0
2

dhl~E;pW !, ~22!

where the positive measuredhl(E,pW ) is supported on the
spectrum ofH restricted to the odd states with momentumpW .
Whenl50, we have from Eq.~17!

S̃l
~2!~p!5

1

p0
21E0~pW !2

; E0~pW !5(
i 51

d

~12cospi !1
1

2
m2.

~23!

E0(pW ) is identified with the energy of an elementary exci

tion ~quasiparticle! with momentum pW and massE0(0W )
5M05m2/2 in the free, i.e., thel50, case.

Whenl is small,S̃l
(2)(p) has the representation~see Sec.

III !

S̃l
~2!~p!5

cl~pW !

p0
21El~pW !2

1E
2M0

` 2E

E21p0
2

dhl~E;pW !. ~24!
-

El(pW ) is the dispersion function in the interacting theo
and, as will be shown in the next section, it differs fro
E0(pW ) by O(l2). Thus, ifm is large,El(pW ) is isolated from
the rest of the spectrum. The mass of the interacting qu

particle isMl5El(0W )5M01O(l2).
To study the spectrum ofH on even states, consider th

truncated four-point function

Dl~x1 ,x2 ;x3 ,x4!5Sl
~4!~x1 ,x2 ,x3 ,x4!

2Sl
~2!~x1 ,x2!Sl

~2!~x3 ,x4!, ~25!

wherexi5(t i ,xW i). From translation invariance,Dl depends
only on difference variables. Letj5x22x1 , h5x42x3 ,

andt5x32x2 . Writing j5(j0 ,jW ), etc., it follows from Eq.
~19! that if j05h050,

Dl~j,h,t!5„u~2jW !,e2utuHeiPW •tWu~hW !…, ~26!

where

u~hW !5ŵ~0W !ŵ~hW !V2„V,ŵ~0W !ŵ~hW !V…V. ~27!

Let f :Zd→C be an arbitrary function vanishing outside

finite set and letf̃ (pW ) and D̃l(p,q,k) be, respectively, the
Fourier transforms off (xW ) andDl(j,h,t), defined as in Eq.
~20!. A simple calculation shows that

E E
2`

` E E
Td

dd11p dd11q f̄̃~pW ! f̃ ~qW !D̃l~p,q,k!

5E
0

`E
Td

2E

k0
21E2

~2p!3d12

3d~qW 2kW !d„u~ f !,E~E,qW !u~ f !…, ~28!

where
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u~ f !5 (
xWPZd

f ~xW !u~2xW !. ~29!

Formula ~28! is similar to Eq.~21!. The singularities in

k0 , for fixed kW , of the lhs of Eq.~28! give direct information
about the spectrum ofH on the even subspace of states w

momentumkW . To test for the presence of bound states, i
sufficient to study the spectrum on the subspace of z
momentum states.

Whenl50 andkW50, a direct calculation shows that

„ f̃ ,D̃0~k0 ,kW50! f̃ …L2

5
p

4
~2p!d11E

Td

ddp
u f̃ ~pW !1 f̃ ~2pW !u2

E0~pW !FE0~pW !21
1

4
k0

2G ,

~30!

where the lhs of Eq.~30! is a short notation for the lhs of Eq
~28!. The right-hand side~rhs! in Eq. ~30! is analytic ink0
for uIm k0u,2M0. Then, for the free (l50) theory, there is
no energy spectrum in the interval (0,2M0) for even states
with zero momentum, as it should be.

We will show in the next section that, ifl.0 and the
~normal ordered! interacting polynomial has a negative qua
tic term, then the left-hand side of Eq.~28! has a singularity
on the positive imaginary axis below 2M l if d<2. There-
fore, in this case, we do get two-particle bound states.

III. ANALYSIS OF BOUND STATES

The analysis of bound states in local relativistic field the
ries using the Bethe-Salpeter equation is well known. In
particular problem, we deal with a slightly nonlocal fie
theory on a lattice space. The nonlocality makes the Be
Salpeter kernel more complicated and the lattice makes
suitable the use of canonical relative coordinates, as in,
Ref. @6#. Nevertheless, using the coordinatesj, h, and t,
defined before in Eq.~26! most of the analysis can be done
the standard way. Therefore we will be brief.

For ease of computation, the interacting polynomial~5! is
written as an Hermite expansion, with the generating fu
tion for the monomials :xk: given by

:eiax:5eiaxe2~1/2!a2c, ~31!

whereaPR and

c5
1

~2p!d11 E
2`

`

dp0E
Td

ddp
1

p0
21E0~pW !2

5S0
~2!~0W ,0;0W ,0!.

~32!

Let G̃l(p)5S̃l
(2)(p)21 and letk̃l(p)5G̃0(p)2G̃l(p), so

that Dyson’s equation

S̃l
~2!5S̃0

~2!1S̃0
~2!k̃lS̃l

~2! ~33!

is satisfied.
s
o-

-
r

e-
n-
g.,

-

Diagrammatically, k̃l is the sum of all one-particle
irreducible Feynman graphs with two external legs. This i

plies k̃l and henceG̃l to be analytic onuIm p0u,2M0 for real

pW . Also, sincek̃l is O(l) near the zeros„6 iE0(pW ),pW … of

G̃0(p), it follows thatG̃l(p) has zeros nearby, which we ca
„6 iEl(pW ),pW … with El(pW )2E0(pW )5O(l). That these zeros
can only be located on the imaginary axis follows from ge
eral principles, see Eq.~21!. The representation~24! with
cl(pW )511O(l) follows immediately from the above
facts. Actually, we haveEl(pW )2E0(pW )5O(l2) since

(]/]l)G̃l(p)ul5050 by explicit computation.
We next study the truncated four-point function~25! us-

ing the Bethe-Salpeter equation

Dl5Dl
01Dl

0KlDl , ~34!

where Dl , etc., are operators defined by the kern
Dl(x1 ,x2 ;x3 ,x4), etc., and

Dl
0~x1 ,x2 ;x3 ,x4!5Sl

~2!~x1 ,x3!Sl
~2!~x2 ,x4!

1Sl
~2!~x1 ,x4!Sl

~2!~x2 ,x3!. ~35!

The Bethe-Sapeter kernelKl(x1 ,x2 ;x3 ,x4) is the sum of
all connected Feynman diagrams with four~amputated! ex-
ternal lines that are~channel! two-particle irreducible. Intro-
ducing the relative coordinatesj, h, and t as in Sec. II, it
follows that the Fourier transform of the kernels ofDl , Dl

0,
andKl satisfy an equation similar to Eq.~34!:

D̃l~k!5D̃l
0~k!1~2p!22~d11!D̃l

0~k!KW l~k!D̃l~k!,
~36!

where, e.g.,D̃l(k) is defined by the kernelD̃l(p,q,k), i.e.,

„D̃l~k! f …~p!5E
2`

`

dq0E
Td

ddq D̃l~p,q,k! f ~q!. ~37!

The ladder approximation that we adopt here consists

replacingK̃l by its first order termL̃l in the perturbation
expansion. Explicit calculation shows that

L̃l~p,q,k!52
3

4
a2l@E0~pW !1E0~qW !1E0~pW 2kW !

1E0~qW 2kW !#. ~38!

At zero total momentum,

L̃l„p,q,~k0,0W !…52
3

2
a2l@E0~pW !1E0~qW !#. ~39!

We see thatL̃l(k0,0W ) is a rank two operator, in contrast wit
what happens in a genuine local field theory, where the r
is just 1.

Equation~36! with K̃l replaced byL̃l can be solved for

D̃l to yield
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D̃l~k0!5@12~2p!22~d11!D̃l
0~k0!L̃l~k0!#21D̃l

0~k0!

5D̃l
0~k0!@12~2p!22~d11!L̃l~k0!D̃l

0~k0!#21,

~40!

whereD̃l(k0)5D̃l„(k
0,0W )…, etc.

From Eq.~35!, one can show that the action ofD̃l
0(k0) on

functions f (p) depending only onpW is

„D̃l
0~k0! f …~p!5~2p!d11S̃l

~2!~p!S̃l
~2!~k2p!@ f ~pW !1 f ~2pW !#.

~41!

Therefore, iff depends only onpW , we have

„L̃l~k0!D̃l~k0! f …~p!

523a2l~2p!d11@r0~ f !1r1~ f !E0~pW !#,

~42!

where

rn~ f !5 1
2 E

Td

ddq G~qW ,k0!E0~qW !n@ f ~qW !1 f ~2qW !#;

n50,1, ~43!

and

G~qW ,k0!5E
2`

`

dq0 S̃l
~2!~q!S̃l

~2!~k02q0 ,qW !. ~44!

It follows from Eq. ~24! and from a simple analytic continu

ation argument thatG(qW ,k0) is analytic onuIm k0u,2El(0W).

This result depends on the fact thatEl(0W )<El(pW ) for any
pW PTd , which holds becauseSl

(2)(x,y).0.
Recall, from Eq.~28!, that the basic object we want t

analyze is„f ,D̃l(k0) f …, which has the form

„f ,D̃l~k0! f …52~2p!d11E
Td

ddp f̄~pW !G~pW ,k0!g~pW ,k0!,

~45!

where

g~•,k0!5@12~2p!22~d11!L̃l~k0!D̃l
0~k0!#21f . ~46!

The only singularities of Eq.~45! on uIm k0u,2El(0W) must
come from those ofg(•,k0), which in turn come from the
zeros of 12m6(k0), wherem6(k0) are the eigenvalues o

(2p)22(d11)L̃l(k0)D̃l
0(k0) on the space generated by th

functions 1 andE0(pW ).
We find

m6~k0!523a2l~2p!2~d11!
„a~k0!6@b~k0!g~k0!#1/2

…,
~47!

where
a~k0!5E
Td

E0~qW !G~qW ,k0!ddq,

b~k0!5E
Td

G~qW ,k0!ddq,

g~k0!5E
Td

E0~qW !2G~qW ,k0!ddq. ~48!

Now, from Eq.~24!, G(qW ,k0) can be written as

G~qW ,k0!5
p

2

cl~qW !2

El~qW !FEl~qW !21
1

4
~k0!2G 1G1~qW ,k0!,

~49!

whereG1(qW ,k0) is analytic onuIm k0u,El(0W)12M0.
From general principles, the singularities of Eq.~45! can

only be located on the imaginaryk0 axis. Writing k05 ix
with x>0, it is possible to show~using an explicit formula!

that G(qW ,ix).0 for 0<x,2El(0W ). It follows then that
a( ix), b( ix), and g( ix) are positive and, by Schwarz’

inequality,a<@bg#1/2 on 0<x,2El(0W ).
For space dimensiond>3, thena( ix), b( ix), andg( ix)

increase to a finite limit asx→2El(0W ) because the singular
ity generated byG(qW ,ix) is quadratic and therefore inte
grable. Thus, ifl is small enough, 12m6( ix) cannot be

zero on 0,x,2El(0W ) so that, in the ladder approximation
there are no bound states.

If d,3, a, b, and g diverge asx→2El(0W ), but a
2@bg#1/2 remains finite. This yields the nonvanishing of
2m2( ix). Finally, 12m1( ix) is nonzero ifa2.0, and has

a unique zero on the interval 0,x,2El(0W ), if a2,0. This
implies the existence of one bound state for the last cas

Let Ml5El(0W ) be the mass for a single quasiparticle
the interacting theory. The massM* of the bound state is the
solution of ~assuminga2,0!

F~l,iM * !5
2~2p!d11

3a2l
, ~50!

where F(l,k0)5a(l,k0)1@b(l,k0)g(l,k0)#1/2, and we
have made explicit thel dependence ofa, b, andg. Let E
52Ml2M* . Performing an asymptotic analysis of the c
efficientsa, b, andg we find

E~l!5H 9

4

l2

m4 a2
2
„11O~l!…; if d51

expF2
4pm2

3ua2ul
„1O~l!…G ; if d52.

~51!

IV. CONCLUSIONS

In this paper, we have analyzed the existence of bo
states for the generator of stochastic dynamics in purely
laxational lattice Landau-Ginzburg models. This problem
directly related to decay rates of some observables.
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We have shown the existence of a bound state for sm
coupling if the polynomial interaction has a negative qua
term and the space dimension is 1 or 2. This result w
obtained by analyzing the Bethe-Salpeter kernel of the n
local lattice quantum field theory associated with the s
chastic model. Computations have been done in the lad
s

ll
c
s

n-
-
er

approximation, which proved to be quite reliable in cas
where a rigorous analysis could be performed@6#.
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